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A controlled system and the differential inclusion corresponding to it, which function in a finite time interval and are restricted 
by a phase constraint in the form of a compact set in position space, are considered. A trial algorithm for the approximate 
construction of the viability kernel of the differential inclusion is proposed and also an algorithm for constructing the s-viable 
solutions of the controlled system and the differential inclusion. 0 2002 Elsevier Science Ltd. All rights reserved. 

The subject matter of the paper touches on that in [l-161.$ 

1. BASIC DEFINITIONS 

Suppose a control system is given, the behaviour of which is described by the equation. 

x=f(t,x,U), UEP, r~I,I=[r,,e], to<e<= (1.1) 

Here, x is an m-dimensional phase vector of the system, u is a control and P is a compactum in the 
Euclidean space R”. 

It is assumed that the following conditions are satisfied. 

Condition 1. The vector-function f(t, x, U) is continuous with respect to the set of variables t, x, u in 
the domain I X R” X P and also for any bounded and closed domain D C I X Rm, a constant 
L = L(D) E (0, -) exists such that 

IIf(t,x*,u)-_f(t,x,,u)II~Lllx* -x, 11, (t,x*)and(t,x,) from D, UEP 

Condition 2. A constant u E (0, -) exists such that 

lIf(~x,u>ll”p(1 +Ilxll>v (LX,UWJXP 

By a permissible control u(t), t E I , we mean any function which is Lebesgue measurable and which 
satisfies the inclusion u(t) E P, t E I. 

We will call the absolutely continuous vector functionx[t], f E I which is such that $1 = f(t, x[t], u[t]) 
almost everywhere in I the solution of Eq. (1.1) that is generated by the permissible control 
u(t), t E I. We will denote the set of all x* E R”, at which the solutions x[t], x[t,] = x1 of Eq. (l.l), 
generated by all possible permissible controls u(t), arrive at the instant t’, by the symbol Y(t*, t,, x,), 
to < t, < t’ < 8. We will call Y(t’; t,, x*) the attainability set of system (1.1) with the initial condition 

xP.1 = x, corresponding to the instant t’. 
In accordance with Eq. (l.l), we set up the differential inclusion 

xEF(r,x), rE1, F(r,x)=co(f(r,x,u):ueP) 

where co { 0 } denotes a convex hull. 

(1.2) 

We will call the absolutely continuous vector functionx[t], t E I, which satisfies the differential inclusion 
(1.2) almost everywhere in I, the solution of the differential inclusion (1.2). We will assume that 
X(t*; t,,x,), to =z t, < t’ c 8 is the set of allx’ E R” at which all possible solutionsx[t], x[t.] = x, of the 
differential inclusion (1.2) arrive at the instant t’. 

tPrik1. Mat. Mekh. Vol. 65, No. 5, pp. 831~S42,2001. 
*See also: FILIPPOVA, 1: E, Viability problems for differential inclusions. Doctorate dissertation, 01.01 .CC!, Ekaterinburg, 1992. 
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The equality 

X(t*;r,,x,)=clY(r’;r,,x,), x,ER~ (1.3) 

holds, where clY is the closure of the set Y. 
It is more convenient to work with closed attainability sets and we shall therefore work with the 

attainability set of differential inclusion (1.2). 
We will assume that, together with systems (1.1) and (1.2), a closed set @ C I X R”’ is specified which 

has the non-empty intersections (o(t) = {x E Rm: (t, x) E 0}, t E I and, moreover, @(Cl) is compacturn 
in R”. 

We shall say that the solution 

xltl, rE[r,,el, xrr*1= x*, r, EI 

of differential inclusion (1.2) is viable in Cp if 

(L-drl)E@, rE[r*,01 

(1.4 

(1.5) 

2. THE VIABILITY KERNEL 

We will now consider the problem of the approximate construction of the viability kernel of differential 
inclusion (1.2) in the set a. 

Definition 2.1. We will call the set of all (f.,x,) E a, which are such that solution (1.4) of differential 
inclusion (1.2) exists which is viable in 0, the viability kernel Q of differential inclusion (1.2) in the set 
@. 

Taking conditions 1 and 2, which are imposed on system (1. l), into account, it can be shown that the 
set of all (f,x), belonging to the solutions of differential inclusion (1.2), which are viable in 0, is contained 
in a certain bounded and closed set D C I X R”. We shall assume, without loss of generality in the 
arguments, that all the points (t,x[t]) and all the constructions which are considered below are contained 
in D. 

We will use the notation 

Q-1) 

Here, d(F*, F.) is the Hausdorff distance between the sets F* and F,. 
It follows from the definition of the functions o’(6) and w(6) that they decrease monotonically to 

zero when 6 + 0. 
We will now specify the sequence of subdivisions r, = {to, ti, . . . fN@) = 0) of the interval I such that 

the diameters 

A”R’=max(A.~O<i~N(n)-l), , . A.=r. -t. I r+l I 

of the subdivisions l-‘, tend monotonically to zero as the number IZ increases. 
Note that the instants ti of the subdivisions r,, are their own for each subdivision r,. However, in 

order not to make the notation more complicated, we shall not explicitly reflect this dependence of the 
instants of time on the number n. We will assume that 

X(t*;r,,X,) = U X(r*;r,,x,), X,cR” 
X. EX+ 

X-‘(r,;r*,X*) = (x, eRrn : X(r*;r,,x,)nX* #0), X’ CR’” 

%(r*;rl,x,) = xl +(r* -r,)F(r,,x,) 

ji;-‘(r,,r*,X’)= (x, eRm : X(t*; r,x,)nX* 20) 

and that X, is the s-neighbourhood of the set X’. Here, t, =z t. < t’ s 8, X* c Rm, E > 0. 
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We set up a sequence {Ei} of numbers to correspond to each subdivision r,. 

~i=~(Ai_l)+(l+LAi_,)~i_l, i=l,2,...,N(n); EO=’ 

We also set up a sequence {&?‘)(ti)} of sets a(“)@,) C R”, ti em, defined by recurrence relations, 
starting from the final instant f~(,,) = 0 of the subdivision I’,,, corresponding to each subdivision r,. 

Definition 2.2. We will assume that 

The sequence {b’“‘(ti)} is therefore the retrogradely defined sequence of sets !?J(“)(ti) in R”‘. We will now 
determine the limit of this sequence {C4(“)(ti)} when A @), the diameter of the subdivision I,, tends to zero. 

Definition 2.3. We will assume that sZ” is the set of all points (t,, x,) ~1 X Rm, for each of which a 
sequence 

is found. 

{(z,,x,> : z, = t,(t*), x, EW(S,)] 

that(t,,x,)= lim(T,,x,,); here t,,(ta)=,,e~~,, ti. 
n-b- 1 n-r . 

(2.2) 

It follows from this definition that Q” C Cp. 
Note that 8’ is non-empty since, according to the definition, fi(“)(tNc,,) = (P(O),(,), and this means 

that the intersection Q’(0) = {x: (0,x) E 51 } is non-empty. 
The following assertion holds. 

Theorem 2.1. The set Q” is the viability kernel of differential inclusion (1.2) in the set a, that is Q” = Q. 

Proof. We will first prove the inclusion sZ” C Q. We fix an arbitrary point (t*, x,) E 52’, 1, c 8 and a 
sequence (2.2) is found such that (LX,) =J@-(r,,x,J. 

We now consider an arbitrary number n and the interval [z,,, e] corresponding to it. It follows from 
the inclusion x, E b(“)(z,) that a vector function i(“)[t], which is absolutely continuous in [z,, 01, exists 
such that 

(2.3 , 
X(“)[qJ=x,, i(n)[ti]Efii(“)(ti), 7, <ti <e 

We now introduce functions into the treatment which are continuous extensions of the functions Z@)[t], 
t E [r,, O] in the interval [t,, 01 

j’“‘[t] = 1 P[zJ, t,st4r, 

Z.‘“‘[t], 7” <tse 
n = 1,2,... 

Since the sequence {j(“)[t]} is uniformly bounded and equipotentially continuous in [t., 01, a uniformly 
converging subsequence can be selected from it. Without loss of generality, we shall assume that the 
sequence {j(“)[t]} itself is uniformly convergent in ft., e]. On putting 

x[t] = lim j(“)[t], t E[t,,e] 
n-b- 

we obtain 

x[t,] = lim j’“‘[t,] = lim P)[7,] = lim x, =x, 
IL-_)- “+- n-w-- 

x[t] = lim j’“‘[t]= lim _P[t], tE(t,,e] 
n+- n-+- 

(2.4) 
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If follows from condition (2.2) and (2.3) and from relations (2.4) that the vector function x[t], 
t E [t*, 01 satisfies the differential inclusion 

and the inclusion 

x EF(~, x) almost everywhere in [t,, E 

Inclusion (2.5) is proved in the standard way (see, for example, [l 

‘I 

, pp. 60,611). 

We will now prove relation (2.6). We fix an arbitrary instant tE [t., 01. The equality x[t] = lim_ J(“‘[t] holds for 

this instant. By construction of the functiony(“)[t], t E [t., 01, the inclusionj(“)[t,,(r)] = i(“)[t,,(t)] l b&(&(t)) is satisfied, 
and the instant t”(t) is defined above. We put nn = r,(t) andy, = _@)[tn(t)]. Then, 

11~~.~~~l~-_(T),.Y,~ll~ll~~.x~~l~-~~.y~”~~~l~lI+ 

+ll~r.~‘“‘[~1~-~r,~r~,~‘“‘~r,~r~l~ll~llx~rl-~~”~~rlll+~l +K)A”” 

On taking account of this equality and the limiting relations 

x[I]= lim j(“)[t], lim A(‘“) = 0 
!I-+- n-b- 

we obtain that 

(t,x[t]) = ;iJn_(q”,Y”), qn = ~,(O* Yn Efi(“)(M 

Inclusion (2.6) is thereby proved. 

Inclusion (2.6) means that (t, x[t]) EQ’, t E [t,, 01. Then, on taking account of the inclusion 0’ c r~, 
we obtain (t, x[t]) E@, t E [t,, 01. 

We have thus shown that a solution (1.4) of differential inclusion (1.2), which is viable in 0, can be 
found for any point (t,, x,) E sZ”, t, c 8. It is also obvious that any point (t,, x,) EQ’, t, = 8 satisfies the 
inclusion (t,, x,) E Cp. At the same time, it has been shown that Q” C L-2. 

We will now prove the inverse inclusion 52 c Q”. 
Consider a subdivision I, of the interval I and all of those intersections &Z(Q), ti E r,, of the set Q 

which are non-empty. The notation T, = {ti E I, : Q(tJ f 0) is used. It is clear that the set T,, possesses 
the following property: if tj E T,, then ti+l E T,. 

The inclusions 

n(ti)C~(t;)nX-‘(ti;ti+l,a(ti+,)), tiETn (2.7) 

hold. 
Actually, suppose xci) E Q(tJ. Then, a solutionx[t], t E [ti, O],x[ti] = xti) of differential inclusion (1.2) 

is found which is viable in @. Since the solution x[t], t E [ti+ly e] is viable in @, then x[ti+J E CJ(ti+l). 
It follows from this that 

and this means that 

On also taking account of the inclusion Q(ti) C @(tJ, we obtain relations (2.7). 
We now choose an arbitrary instant ti E T,, ti < 0 and consider the sets Q(tJ and C2(ti+l)w(hij; the 

numbers w(AJ are defined above. 
The inclusion 

(2.8) 
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holds. 

We will now prove this. Suppose&] E sZ(ti). Each pointr[fi+i] EX(ti+i; I, t. X[ti]) is a finite value of a certain solution 
x[t], t E [tip ti+l] of the differential inclusion i EF(~, x), t E [ti, ti+i] with an initial value X[ti]. The equality 

'i+l 

x[t;+l I= x[til+ Ii, Ii = J f[Mt, ff_~l~F(t~~f~l)~ lE[ti,li+r I 

holds. 
On taking account of the definition of the function O*(A), we obtain 

d(F(r,x[r]). F(~i.~[r~]))~~‘(l~-~i(+l(~[~l-~[~illl)~~*((~+K)Ai), IE[ti,fi+rl 

This means that the inclusion 

fl~lEF(ti~x[til) W’((l+K)Ai) rE[fi*ti+l I 

holds, from which the inclusion 

(2.9) 

(2.10) 

follows. 
The inclusion 

x[ri+l]EXII;l+A\iF(fi.X[‘iI)o*((,+~~A,~ =~‘Zti+~;‘i*x[‘iI~(Ai) (2.11) 
1 

follows from (2.10). 
On taking account of the fact that relation (2.11) was obtained for an arbitrary point X[ti+l] E X(ti+l); ti, x[ti], 

we conclude that 

It follows from the inclusion x[ti] E sZ(ti) that 

and this means that 

R(~i+~),(Ai)nji(~i+,;ri,x[tiI)‘O (2.12) 

Since the instant ti ET,, and the pointx[ti] E Q(Q) were chosen in an arbitrary manner, the inclusion (2.8) follows 
from (2.12). 

We now define a system {@)(fJ : ti ET,) of sets 6(“)(?J by the equalities !?J’*)(ti) = SZ(fi)Ei (the numbers 

Ei are defined above at the beginning of section 2). According to the definition of the sets {B(“)(ti), ti ET,}, 
the inclusions 

are satisfied. 
The inclusions 

C4(t+&“‘(r.) t. ET I I’ I n 

hold. 

““‘(t,)cf-‘(ti;~i+~,B(n’(~~+~)), ti ET, (2.13) 

We will now prove this. Supposex[ti] E fiCn)(ti) andx’[ti] is the closest point in Q(ti) to the pointx[ti]. The inequality 
]]r[ti] -x*[ti] ]( s&i holds. 
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The relation 

follows from the inclusions X’[ti] E O(t) and (2.8). 
A point 

(2.14) 

(2.15) 

then exists which is contained in sl(ti+&tAi). 
Taking account of the inequality 

4F(fi,x[qI), ~~~~~~‘~~~I~~~~Ilx[~~l~~*~~~1ll 

we choose a vectorf[ti] EF&, x[ti]) which satisfies the inequality 

llf~~il~f*~filll~Lll~~ril~-x*~f~lllb~j 

It is then found that the point x[ti+i] = X[ti] + AJ[ti] is spaced a distance from the point (2.15) not greater than 
by the amount 

This means that 

Hence, it has been shown that the relation 

~(~i+~;fi,X[f’J)r)ii(“)(li+~)#Izr I 

holds for any ti E T,, X[ti] E B”“(ti), and inclusion (2.13) follows from this. 
The inclusions 

iici’“‘(t.)ciii’“‘(t.) t. ET I I’, n 

hold. 

We will now prove (2.16) by mathematical induction. In fact, the relations 

h’“‘(t;)=Q(ri),i C~(ti),i, ti ET, 

i2(n)(rN(n))=R(rN(n))PN(n, =@h~h~(~, = iP)(tN(n)) 

are satisfied. Consequently, B(“‘(t~)Cfi(“‘(ri) is satisfied for i = N(n). 
We will prove that this inclusion is satisfied for all remaining i for which ti ET,. 
To do this, we assume that ri ET, and that the inclusion 

(2.16) 

(2.17) 

(2.18) 

kP(r, I+1 )dP(ri+, 1 (2.19) 

holds for the instant ti+l. 
We will now prove that S?J2(n)(ti)Cai(“)(ti). Actually, it follows from (2.13) and (2.17) that 

h(“)(r.)cO(fi),. nx-‘(ri;ri+~,i2’“‘(ri+~)) I 

and it follows from (2.19) that D(& n?‘(ti; ti+i, bO(tj+r))C@(t& flX-‘(ti; ti+t, b(“)(t,+t)). From this 
we obtain L?&“)(ti)CQ”)(ti). At the same time, relations (2.16) have been proved. 

We will now use relation (2.16) to prove the inclusion Q C SZ’. 
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In the case when t, = 8, the equalities 

Q(L) = @@), Ro(t*) = Q(0) 

are satisfied and this means that Q(t,) = Q’(t,). 
Suppose t, < 8. We choose an arbitrary point (t*, x,) E Q. The inequalities 

rr < r,,(r+) S tt +A(“), n = 1,2,... 

hold. 
Since (t,,x,) E Q, a solutionx[t], t E [t*, Cl]&.] = x, of differential inclusion (1.2) exists which is viable 

in 0. Any “piece” x[t], t E [t’, 91, t, G t* s 0 of this solution is a solution of differential inclusion (1.2) 
which is viable in 0. The inclusion 

x[t,(r,)l E Qt,(r*)) c i2’“‘(r,(t*)) c fi2’“‘(r,(t*)) 

follows from this. 
This means that a point x[t,&.)] is found for each n such that 

x[r, (t* )I E ii(r, (I, )), II x[r,,(r. )I - x, IF KG, (tt) - L 1 

On taking account of the equality 

lim (t,(t,)- t,) = 0 
n--s- 

we obtain that the sequence {(&(f,), x[t,(tt)])} satisfies the relation 

lim (t,(t,),x[t,(r.)l) = (r*,x*) 
n-b- 

and this means that (t., x,) E Q”. 
It has been shown that Q(L), C QO(t,), t, -c 8. 
The inclusion Q C 52’ follows from the relations Q(e) C Q’(e) and Q(L) C Sl”(t.), t, -z 8. From the 

inclusions Q” C Q, 52 C Q”, it follows that Q = Q”. Theorem 2.1. is proved. 

3. THE CONSTRUCTION OF E-VIABLE SOLUTIONS 

We will now propose a procedure for constructing s-viable solutions of control system (1.1) and 
differential inclusion (1.2). This procedure is a well-known control procedure with a guide [4], which 
has been adapted for solving viability problems. We will assume that the following condition is satisfied 
with respect to the set 0. 

Condition 3. The inequality 

is satisfied, where the function x(6) satisfies the limiting relation l&x(6) = 0. Here, d(@(t’), Q’(Q) is 

the Hausdorff distance between the intersections a(&) and Q(t*) of the set @. 
We will now describe a control procedure with a guide. Suppose I,, is a certain subdivision from the 

sequence of subdivisions of the interval I, which has been defined in section 2. We will assume that we 
have already calculated all of the sets fi(‘)(ti), tj ET,, defined by the relations 

sZ(Ye) = wo,,(n,, fi’“‘(t~)=O(t;),i n ~-‘(ti;ti+l,~‘n’(ti+l)), t;,ti+l ET,, 

Suppose tk is the least instant in the set T,,. We consider an arbitrary point x, E fi(“)(tk) and put 

x[tk] = Z[tk] = X,. A vector&] E F(fk, z[t,& iS found such that 

zltk+, I= r[h. I+ A&t 1 E ~Z(n)(rk+, ) (3.1) 
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Since z[tk+ i] E d@)(tk+ t), a vector f[Q+ r] E F(t k+i, z[tk+r]) is found such that relation (3.1) is satisfied 
when k is replaced by k + 1. 

We assume that the point z[&+J E @*)(f,+,) has been calculated at a certain instant tk+ E T,. We 
then determine the following point z[r 
is a certain vector from F(t 

k.+p+i] Using relation (3.1) with k replaced by k +p, wfleref[tk+p] 

z[tk+pl, #k+p+ll> * . .Y 

k+p, z[fk+p]). Thus, by continuing to construct the points z[fk], z[tk+i], . , . , 

successively, we finally construct the last point such that relation (3.1) is satisfied 
when k = N(n) - 1, where 

z[~N(~)-I 1 E ~(“)(~,sQ)-I hf[t~(+-~ 1 E R~N(~J-~~L[~N(,,)-~ I) 

The sequence {z[# (i = k, k + 1, . .., N(n)) satisfies the relations Z[ti] E @(ti), and it can 
be represented as a discretely defined motion of a guide for control system (1.1) in the interval I. 
We supplement the discretely defined motion of the guide in the whole of the interval [t*, (31 by 
putting 

z[fI = Zlfi] + (I - ti)f[f;], t E [f;, ti+i), i = k, k + 1,. . ., N(n) - 1 

Using the motion of the guide z[t], t E [tk, 01, we determine the control 

u(~)=u;, TV [tivt;+i), USE P,i=k,k+l,...,N(n)-1 

which generates the s-viable solution of system (1.1) We determine the sequence uk, &+r, . . . , uN(n)_l 
as follows. We consider an interval [tk, tk+r) of the subdivisions r, and arbitrarily choose a vector 
uk E P. The solutionx[t], t E [tk, tk+l] of system (l.l), generated by the control u(t) = uk, t E [tk, tk+t) 
and with an initial condition x[tk] = x., satisfies the relation 

xltI = -% + *(tk,t), *(tk,t) = j f(%X[r],u(T))dr, r E [$,$+,I 
1. 

We now consider the interval [t k+l, tk+2) and the vector @k+l] = $k+l] --&+lla 

If s[tk+i] = 0, we choose an arbitrary vector &+I E P 
If &+r] f 0, we choose a vector &+I E P from the condition 

where s’f denotes the scalar product of the vectors s and j 
The solution x[f], t E [t k+t, tk+2] of system (l.l), which is generated by the control u(t) = uk+i, 

t E [tk+i, tk+2), satisfies the relation 

Next, we calculate the vector s[tk+2] = z[tk+2] -%[tk+2] and, as before, we choose a vector &+2 E P. 
Thus, by continuing to construct the vectors S[ti] = z[tJ - x[tJ and ui(i = k, k + 1, . . . , N(n) - 1) 
successively, we also determine in parallel the solution of system (1.1) which is generated by the 
piecewise-constant control 

We have 

u(r) = Uiv t E [fi, ri+i), i = k, k + 1,. a., N(n) - 1 

~[t]=~[ti]+@(ti,t), TV [ti,ti+l], i=k,k+ l,...yN(t~)-l 

We will now derive an upper limit of the square of the magnitude of the deviation of the solution 
$1 from the set 0(t), t E [tk, (31. This deviation will be denoted by the symbol 

To do this, we first derive an upper limit of the quantity ]]S[ti] ]I 2 in terms of the initial magnitude of 
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]]s[tk] ]] 2 (the notation s[tk] = z[rk] - x[tk] = 0 is used here). 
The equality 

'i+l 'Al 

dri+l I = dril+ j ftrildr - j f(t9X[flv4t))dt 
‘i ‘i 

f[til~JJ(t;vz(t;I), ui ~Us[,;](t;vX(tiI), Us,,il(ti.X[ti])={u, ~P:s[ti]‘f(ti,x[ti],u,)= 

=~~~S(til’f(ti.X[tilrU)l, S[ti]=Z[ti]-X[ti] 

(3.2) 

II dfi+l 111*=11 dril II* +2fif’ s~r~l’(f~r~l~f(r~x~rl~u~~~dr + Y(tivti+,) 
‘i 

holds for each i, k f i 6 N(n) - 1. 
Using arguments which are standard in the theory of differential games (see [4]), we obtain 

s[tiI’(f[tiI-f(t,x[tI,u;))d L II S[til II* +y~*((l +K)Ai) 

Y = y(D) = maxlIl(r, wd - (r, w*>ll: (I, w+), (r, w’) E. D) cc 

whence we find 

2 1 ArJ’(f[tiI- f(tvx[tI,ui)Mt =S 2L I] s[ti] ]I* Ai +‘y~*((l+ K)Ai)A; 
‘i 

The limit 

holds for the quantity y(ti, ti+l). 
Taking (3.3) and (3.4) into account, we obtain 

IIs[t,+~]ll*~lls[t;]l~* +2LA; II~[ti]ll* +p*((l+K)Ai)Ai +4K*A:, i= kyk+l,...,h’(n)-I 

and, from this, the limit 

I[ S[fi+,] II*< e21di IIs[t;]ll* +Ai(P(Ai), i=k,k+l,...,N(n)-1 

follows, where 

v(A) = yo*(( 1 + K)A) + 4K2A22, A > 0 

(3.3) 

(3.4) 

(35) 

is a quantity which tends to zero as A -+ 0 and is independent of the choice of the points (ti, X[ti]) and 
(ri7 dril)* 

The limit 

I] s[ti] II*< e2L(e-‘o) (IIs[rk]l12 +(e-r,)cp(d”‘)), i=k+l,k+2,...,N(n) 

is obtained from the limit (3.5) by successive substitution of its upper limit instead of the quantity ]]s[tjJ ]12. 
Since Ils[tk] II = 0, we then obtain 

11 s[ti] II*< e2L(e-‘o) (8-t,)(p(d”‘), i=k+l,k+2 ,..., N(n) (3.6) 

Further, d(a(ti), Q(t)) s X(Ai) according to Condition 3. The inequality 
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is also satisfied, and it follows from this that 

Q’(z[~I, a,(t)) 411 ~[tl- z]ti I II +d(z[t; 19 @(ri )) + d(@(t; 1, Q(t)> s ai + Ei + x(Ai) 

and this means that 

d(Z[t],@(t)) s Kd’“’ + &N(,,) +x(A”“‘), ‘~[ti,t;+l]r i=k,k+I,...,N(n)-I 

Hence, inequality (3.7) holds for any point z[t], t E [tk, 01. 
Taking account of the limit 

Ilr[r] -~[ti]ll ~ KAi C ~‘“‘, Ilz[t] -~[f;Jll ~ KAi ~ ~‘n’ 

when t E [ti, ti+r], i = k, k + 1, . . . N(n) - 1 and, also, limit (3.6), we obtain 

II xlfl - dfl II c II ‘ItI - dril II + II dti I - Ziril II + II dtil - ZLrl IF 2KA’“’ + 

+e L’e-f0’~8_ro)%cp(A(“‘~X 

In turn, we find from this 

The limit 

&N(n) G e L(e-to@- r,+*((l + K)A’“‘) 

holds for the quantity &N(n) on the right-hand side of inequality (3.8). 
Taking inequality (3.9) into account, from (3.8) we obtain the limit 

d(x[t],@(r)) G 3KA”” + e L(e-‘O)(e_‘o)X~(A(“‘)K + 

+ eL’e-‘o)(k3 - r,,)o’((l + K)A(“)) + x(A’“‘) 

Since the functions q(A), ~‘((1 + K)A), x(A) satisfy the limiting relations 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

ljgcp(A) = 0, liry*((l + K)A) = 0, !@A) = 0, 

and the sequence of subdivisions {I’,} of the interval I is such that !?_A(‘) = 0, the right-hand side of 

inequality (3.10) tends to zero as n + m. It follows from this that the following assertion holds. 

Theorem 3.1. Suppose control system (1.1) satisfies Conditions 1 and 2, and the set - constraint 
@ satisfies Condition 3. Then, for any E > 0, a number IZ, = ~z,(E) is found such that for every 
n 3 n. and any pointx, E at”)(fk)(tk is the least instant in the set T,), a permissible control is found that 
yz;;t;; a solution x[r], t E [tk, e] of system (1.1) which satisfies the inequality d(x[r], 0(t)) G E, 

9 * 

Remark 1. The construction of an s-viable solution x[t] is possible for the approach described here only if 
the functions (p(S), ~‘((1 + K)6) and x(S) of the variable 6 > 0 are known. In the case of this condition, on 
fixing E E (0, -), we find a number n. = n,(~) such that, when II = n,, the following inequalities, for example, 
hold 

(3.11) 
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Such a choice of the number n = n, ensures the existence of a solution x[t] of control system (1.1) 

(x[fkl = x. E ii’“‘(t which satisfies the inequality d(x[t], Q(t)) 6 &, t E [tk, 81, that is, which is E-viable in Cp. 
By virtue of the monotonic decrease of the diameters A(“) to zero when n + -, we also obtain that, for any n 

3 n. and for any pointx. E fi’“‘(tk), a permissible control u(t), t E [tk, 01 is also found which generates an E-viable 
solution of control system (1.1). This control u(t), t E [tk, O] can be formulated as a piecewise-constant control for 
system (1.1) in a control procedure with a guide corresponding to the subdivision r,,. 

Remark 2. A permissible piecewise-constant control u(t), t E [t;, Cl)], that generates a solution of system (1.1) 
which is E-viable in @, is found in the case of the numbers n, to which the diameters A(“) that satisfy inequalities 
(3.11) correspond, not only for the points x. E &“)(tk) but also for every point x. E fi(“)(fJ, ti E T,. 

Remark 3. In the case when control system (1.1) is autonomous, that is, the vector functionf(t,x) does not explicitly 
depend on t, the function w’(6) (see the beginning of section 2) takes a form which differs from (2.1) in that 
d(F(t’, xi), F(t., x.)) is replaced by d(F(x*), F(x.)) an d , moreover, d(F(x’), F(x.)) G L(lx’ -x. I(. 

In this case, limit (2.9) for the change of the set F(t, x) along the solution x[t], t E [Q, ri+l] can be replaced by 
the limit 

dWx[tl),F(x~r;l)) s L II x[tl--x[t;lII~ LKA;, t l [r;.~;+,l 

Hence, in the case when control system (1.1) is autonomous, the function ~‘((1 + K)S, 6 > 0 in section 2 can 
be replaced by the function o’(6) = LK6,6 > 0 and, if it is also permitted that the function x(6), S > 0 has the 
form x(6) = a@, 6 > 0, where a and p are certain positive constants, then limits (3.11) take the form 

3KA(“’ 4 &/4, ,L’e-ro’(e-to)K(yLKA(‘“) +4K2A(‘“+ )x G&4 

eL(‘-‘o)(e _r,)% LKA((“) < c/4, aA( s El4 

Then, the number n., about which we have spoken in Theorem (3.1), can be determined as simultaneously 
satisfying the four equalities 

A(“.) ’ S- 
12K’ 

A(“* ) < E2 

16eZL”-‘O’(yLK+4K2) 

Since the diameters A@) decrease monotonically to zero as n + 00, 
which 

a permissible control u(t), t E [tk, O] 

4, 
enerates an E-viable solution x[t] of control system (1.1) is found for every n 2 n, and any point 

x. l 52 (tk). 
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